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Poincaré’s Mathematical Creations in
Search of the “True Relations of Things’

Connemara Doran

Can science teach us the true relations of things?

Henri Poincaré, The Value of Science, 1905.

4.1 INTRODUCTION

‘Mathematical physics and pure analysis. .. mutually interpenetrate and their spirit is the
same.”! Addressing (in absentia) the first International Congress of Mathematicians
(ICM) in Ziirich in 1897, Henri Poincaré (1854-1912)—French mathematician, mathemat-
ical physicist and philosopher—explained his vision of the mutual needs and shared spirit
of these worlds, a perspective shaped by his deep conceptual work at that interface for
almost two decades. ‘Mathematics have a triple aim’, he argued. It is ‘not enough’ that
mathematics aims to ‘furnish an instrument for the study of nature’ so that the physicist
could ‘know it better’, an aim notably exemplified by advances ‘already rough-hewn’ in
celestial mechanics and mathematical physics. TMathematics must also] have a philo-
sophical aim, and, I dare maintain, an aesthetic aim. They must aid the philosopher [and
physicist] to fathom the notions of number, of space, of time.™

Pure analysis—a battlefield long engaging the profound subtleties of infinitesimals
and infinity, differentiability and continuity, number and the mathematical continuum—
helped secure those advances in understanding nature (notably, Poincaré’s new methods
of celestial mechanics), but it also thereby deepened the needs and promises within
mathematical physics. Mathematics, he asserted, must probe these depths with the “aes-
thetic purpose’ of enabling philosophers and physicists to grasp, articulate and expose
such subtleties and relations within nature:

The physicist cannot ask of the analyst to reveal to him a new truth; the [analyst] could at
most only aid [the physicist] to foresee it. . .. All laws are therefore deduced from experiment;
but to enunciate them, a special language is needful; ordinary language is too poor, it is
besides too vague to express relations so delicate, so rich, and so precise. This therefore is
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one reason why the physicist cannot do without mathematics: it furnishes him the only
language he can speak.?

Poincaré’s mathematical corpus attested to the richness of conceptual advance, pure and
applied, that is possible within the intertwined fields of analysis and physics. Some
among his audience would soon come to understand aspects of his vision and help
advance it. Poincaré was just beginning another surge in activity at that interface, creat-
ing an array of utterly new mathematics (and associated philosophical discourse) that
would ground his response to the radical new challenges within fin-de-siécle physics, a
crisis within theory that greatly increased the stakes regarding our notions of number,
space, time and, therewith, the physicists’ ether.

In 1900, three international Congresses met in Paris—the second ICM, the first
International Congress of Physicists (ICP) and the first International Congress of
Philosophy (ICPHIL)—pushing the boundaries of open questions in the respective
disciplines and their interconnections. In mathematics, emphasis on a fully rigorous axio-
matic, strictly deductive, formal approach to proof advanced in tandem with a drive for
a mathematics anchored in the certainties of ‘number” within arithmetic rather than in
subtleties (not yet deductively proven) about ‘dimension’ and the ‘mathematical con-
tinuum’ within analysis. In theoretical physics, experimental discoveries and electro-
dynamic theories challenged Newtonian notions of space, time and matter. Philosophical
discourse about the meaning, methods and purpose of science stumbled on questions
about space, absolute motion and the nature of the ether.

This chapter assesses the following question: how did Poincaré’s vast corpus of math-
ematical innovation engage the rationale, and impact the fate, of the notion of the ether
in physics? It asks what Poincaré was thinking, and it seeks understanding through his
voice (speaking mathematics and philosophy), not through the arguments of contempor-
aries and later interpreters who did not grasp his full meaning (often completely distort-
ingit), nor through categories foreign to his unique way of thinking. It finds that Poincaré
had no ownership of the physicists” ether concept, and that he viewed the ether as nei-
ther necessary nor necessarily a hindrance for further advance. Rather, Poincaré attended
to the profound and subtle needs within physics by creating profound and subtle math-
ematics—utterly new theoretical and interpretive concepts, tools and structures—to cap-
ture the ‘true relations of things’, rendering the physicists” ether superfluous to that goal
while also creating mathematical structures for gravitational and quantum phenomena.

In his scientific practice and philosophy of science, Poincaré sought the ‘true relations’
that adhere in the phenomena—relations that persist irrespective of the choice of a met-
ric geometry and a change in physical theory. This chapter is structured to aid under-
standing of how Poincaré’s lifeworks ‘hang together*—how they cohere within
Poincaré’s way of thinking—which enables us to assess how his work instantiates what
he means by the ‘true relations of things’ that unify physics.

Taking a historicist perspective anchored in detailed assessments of Poincaré’s corpus
and legacy by mathematicians and historians of mathematics, the chapter traces key
strands in Poincaré’s 1880s engagement with the subtleties of space and time and the
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structure we know as spacetime, and, concurrently, with the conceptual possibilities that
opened to him as he sought to master and exploit topological intuitions in creating
analysis situs (algebraic topology). It traces how Poincaré embedded these utterly new
geometric and topological ways of thinking at the heart of pure mathematics,
mathematical physics and philosophy.

Section 4.1 explains how Poincaré emphasised the need to break free from the
geometry habituated by our senses, altered the discourse about the geometry of physical
space and set out to create a new mathematics for relations ‘so delicate, so rich, and so
precise’. Section 4.2 examines Poincaré’s 1891 essay, detailing how he maps the path from
his 1880 hyperboloid model to his 1887 “fourth geometry'—offering different lenses into the
geometry that would become Minkowski spacetime. Section 4.3 traces through Poincaré’s
philosophical writings (from 1901 to 1905) and his 1904 St. Louis address on the dynamics
of the electron, documenting his view of the physicists’ ether as a disposable ‘garment’
in the search for the ‘true relations’ that persist within natural phenomena. Section 4.4
examines the reaction to Poincaré’s work at Gottingen, where Poincaré’s corpus was
assiduously studied and built upon, illustrating how Poincaré’s geometric creations from
1880 to his four-dimensional geometric interpretation of the Lorentz transformation
was a ready resource for Hermann Minkowski as he developed his spacetime geometry
based on Einstein’s theory of special relativity. Section 4.5 offers concluding comments
about Poincaré’s last year of life and his legacy, witnessing a juxtaposition of his works
on space and time, analysis situs and dimension, quantum theory and statistical
mechanics, and documenting the profundity that Poincaré and Einstein recognised in
each other’s works.

4.2 SEEKING A MATHEMATICS TO EXPRESS ‘RELATIONS
SO DELICATE, SO RICH, AND SO PRECISE’

The question of the geometry of physical space was rooted in early nineteenth-century
discoveries regarding non-Euclidean geometries, intrinsic curvature and topological
shape. Mathematicians mid-century were intrigued by topological possibilities for our
space, but philosophers and physicists focused more on the question whether it might
exhibit a positive or negative curvature at an astronomically large scale—whether ours
might be a spherical world (with positive curvature) or a hyperbolic world (with negative
curvature) rather than a Euclidean one (with zero curvature). The notion that one might
empirically measure the curvature of our space by means such as stellar parallax became
a tantalising possibility, indeed, an increasingly confident and explicit goal within
informed scientific communities in the 1890s.

In an 1891 essay entitled “Les géométries non euclidiennes’, Poincaré radically altered the
possibilities and stakes regarding the question of the ‘true’ geometry and topology of
our space and how we can come to know it.” In a highly provocative thought experi-
ment, Poincaré explained how intelligent creatures from a hyperbolic world, whose
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geometry is based on its freely chosen non-Euclidean conventions, would, if transported
to our world, observe the same phenomena we do but express the physical laws differ-
ently. We, likewise, would easily enunciate the laws of their world using our Euclidean
conventions. Yet, in each such world, while understanding of the ‘true relations’ of its
physical phenomena would be secure, no experiment would be able to determine by
metric means alone the actual geometry of that world.

Poincaré’s ‘fiction’ of the hyperbolic world (introduced in his ‘Letter to Mouret’)®
challenged the validity of the assumptions of geometric empiricism—the claim that experi-
ment (measurement) was sufficient to determine the geometry of cosmological space—
while at the same time offering an alternative epistemology (geometric conventionalism)
and promising a new mathematics, a new type of geometric reasoning (which he called
‘analysis situs”) that would help us ‘find a way’ to secure knowledge of the geometry and
topology of spaces of higher dimension.”

As Poincaré explained in 1901, deep challenges throughout his varied research pushed
him to engage in this ongoing mathematical quest and encouraged his trust in profound
rewards for mathematics and physics: As for me, all the diverse paths on which I was
successively engaged [1879-91] have led me to Analysis Situs.”® Poincaré recognised that
mathematics, physics and celestial mechanics needed the certainty of theorems accessible
only with this new type of reasoning.

Poincaré had entered into a philosophical discourse, couched in the language of neo-
Kantian philosophy, which sought foundations for the geometry of our space. The dis-
course first centred on Hermann von Helmholtz’s notion of freely moving rigid
(measuring) bodies, then on infinitesimal transformation groups, becoming known as
the Helmholtz—Lie (classical) space problem.’ Poincaré saw the need to escape its metrical
(measurement) requirements, and his philosophical stance was inextricably tied to his
1887 establishment of the fourth geometry’ (explained in Section 4.3) and to the new
mathematics he was creating.'°

Poincaré’s Analysis Situs’ requires that our imagination break free from the geometry
habituated by our senses, ignore metrical properties of geometric objects (properties
involving measurement of distance and angles) and pursue the difficult art of ‘reasoning
well based on badly drawn figures” by focusing on relations unchanged by any continu-
ous deformation.'’ The years 1887-91 mark the momentous interval during which
Poincaré set himself the task to establish this new field of mathematics for the study of
space. By 1895, Poincaré had single-handedly created the field called “algebraic topology’,
developing over the next decade entirely new concepts, tools and intuitions to assess
topological spaces of three and higher dimensions.*?

The mathematical concept of the amorphous continuum provides the basis (realm of
action) for mathematicians to rigorously conceptualise in higher dimensions, learning
how we can ‘supplement’ our senses so as to reason in ‘hyperspace’. The distinction
between the mathematical (amorphous) continuum and the physical continuum of
experience is crucial, as is Poincaré’s emphasis that we do not have intuition about space
itself. We hear Poincaré’s philosophical voice, speaking mathematics, in the section entitled
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‘Qualitative Geometry’ in his 1903 article ‘Space and Its Three Dimensions’,'* which was
reprinted as Chapter 3, “The Notion of Space’, in his 1907 collection of essays, The Value
of Science:

Euclidean space is not a form imposed upon our sensibility, since we can imagine non-
Euclidean space; but the two spaces, Euclidean and non-Euclidean, have a common basis,
that amorphous continuum of which I spoke in the beginning. From this continuum we can
get either Euclidean space or Lobachevskian space ... This continuum has a certain number
of properties, exempt from all idea of measurement...The theorems of analysis situs have,
therefore, this peculiarity that they would remain true if the figures were copied by an inexpert
draftsman who should grossly change all the proportions and replace the straights by lines
more or less sinuous. In mathematical terms, they are not altered by any ‘point-transforma-
tion” whatsoever. .. Of all the theorems of analysis situs, the most important is that which is
expressed in saying that space has three dimensions.'*

Key to understanding subtleties of this need to pass from the world of the amorphous
continuum to the world of space and geometry is Poincaré’s claim that experience alone
cannot ‘engender mathematical notions’, in particular the notion of mathematical con-
tinuity itself. Adding a metric structure to the amorphous continuum yields a space with
attendant cosmological and epistemological implications.

In his works in analysis situs, Poincaré was after a precise mathematical notion of
dimensionality anchored in the subtle conceptual tools and theorems he was creating. As
he explained in 1908 to the fifth ICM in Rome, such deep penetration into unexplored ter-
rains of thought can ‘enable us really to see into hyperspace and to supplement our
senses’.'” Poincaré insisted that analysis situs is ‘the only true domain of geometric intui-
tion” and, once accessed, promised entry into vast new realms of mathematical activity.*®

4.3 POINCARE’S 1891 ESSAY, FROM HIS 1880
HYPERBOLOID MODEL TO HIS 1887 FOURTH
GEOMETRY: GEOMETRIC REASONING UNTETHERED,
SPACE ‘STRUCTURES’ ENGAGED

Poincaré’s essay ‘Les géométries non euclidiennes” appeared 15 December 1891 in a recently
launched French journal with a diverse scientific audience for whom Poincaré sought to
capture the mathematical and epistemological challenges confronting a geometric (metrically
empirical) understanding of space.!” Many scholars who assess the geometric conven-
tionalism Poincaré introduced there focus on its conclusion, namely that, since hyper-
bolic and Euclidean metrics are inter-translatable, one can choose the simplest, Euclidean
geometry. But Poincaré takes us to that conclusion by making a much deeper argument
about geometry and what it yet lacks.

In a breathless litany, he takes us through Riemann'’s spherical world (finite without
boundary) and the accelerating mathematical innovations that had radically altered the
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nature and role of geometry throughout mathematics and in the formulation of physical
laws. Poincaré repeatedly asserts that we must release geometry from experiences that
restrict our thinking—by contemplating how beings in a hyperbolic three-dimensional
world would create their own geometry, and by recognising what mathematicians have
already done by means of unrestricted geometric reasoning. Immediately after establish-
ing a dictionary between the three-dimensional hyperbolic and Euclidean spaces, he
states, ‘But this is not all’ and starts recounting the fruits of these striking shifts in geo-
metric reasoning.'®

‘Consider what Klein and myself have done by using them in the integration of linear
equations.” A decade earlier Poincaré had changed the essence of hyperbolic geometry
from a mere curiosity of the geometer and an intriguing ‘possibility” to a profound
necessity for the analyst that lay hidden within much of mathematics. In 1880, examining
issues regarding integrals of linear differential equations with algebraic coefficients,
Poincaré had created the theory of automorphic functions, exploiting a series of deep
and subtle insights all the way to the concept of the universal cover and to establishing
and proving the uniformisation theorem that classified solutions of all analytic functions
(as rational, elliptic or Fuchsian functions). As the historian of mathematics Jeremy Gray
argues, Poincaré had devised a unique way of ‘deriving’ the essence of Riemann sur-
faces; he constructed them naturally from discontinuous groups, obtaining them as quo-
tient spaces of the unit disc (rather than as branched coverings of the Riemann sphere),
once he had the wonderful insight that the M&bius transformations he had used to define
the class of Fuchsian functions were identical to the groups of motions of hyperbolic
geometry. Poincaré’s “‘almost effortless introduction of Riemann surfaces’ into his analysis
was viewed as a ‘dramatic novelty ... especially since Riemann’s ideas were still generally
considered obscure and lacking in rigor’.®

A key move in his 1880 epochal advance occurred when Poincaré, while engaging
research on indefinite ternary quadratic forms within number theory, conceptualised a
new model of the hyperbolic plane, a hyperboloid model that projected to the open unit
disc—establishing the existence of his Fuchsian groups and hyperbolic geometry at the
heart of pure mathematics.?® Poincaré’s conceptualisation here is of a completely different
nature from the establishment of Weierstrass coordinates, the Helmholtz hyperboloid
model and other such models of much earlier date.?! Poincaré details how to picture and
construct this profound relationship in a self-analysis of his work (1884, 1886):

One of the most important problems in the subject of indefinite ternary quadratic forms is
the study of the discontinuous groups formed by the similarity substitutions, that is, linear
substitutions which preserve the form. Let F(x, y, z) be an indefinite quadratic form.

We can choose the constant K so that F(x, y, z) = K represents a hyperboloid of two sheets.
The similarity substitutions then map a point on the hyperboloid to another point on the
same sheet and, since the group is discontinuous, the hyperboloid becomes partitioned into
infinitely many curvilinear polygons whose sides are diametric sections of the surface. A
similarity substitution changes each polygon into another. We now take a perspective view
by placing the eye at an umbilic of the surface and taking the plane of projection to be a
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circular section. One sheet of the hyperboloid is projected inside a circle, and the polygons
drawn on this sheet project to curvilinear polygons bounded by circular arcs of the kind we
have discussed in the theory of Fuchsian groups. Thus the study of similarity substitutions of
quadratic forms reduces to that of Fuchsian groups, which is an unexpected rapprochement
between two very different theories, and a new application of non-Euclidean geometry.*?

Poincaré’s surprising linkage of his hyperbolic disc and the two-sheeted hyperboloid cre-
ated a new world of action within mathematics of profound power and import. The
indefinite quadratic form producing the figure Poincaré instructs the reader to visualise
(and construct) is equivalent to the indefinite quadratic form of flat two-dimensional
spacetime; we will see that Minkowski carefully studied Poincaré’s reasoning from these
1880 insights to Poincaré’s 1905—6 creation of the four-dimensional metric (indefinite
quadratic form) linking light, space and time.

Upon discovering Poincaré’s theory of Fuchsian (automorphic) functions, Felix Klein
initiated a correspondence with Poincaré the next day (12 June 1881), claiming in his sec-
ond letter that Poincaré’s “analogy with non-Euclidean geometry does not hold’ for more
complicated cases without a limit circle. Poincaré immediately demonstrated that his
analogy with non-Euclidean geometry does hold by creating his three-dimensional ‘hyper-
bolic ball’ model (the hyperbolic world), and fully generalising his theory of automorphic
functions to all cases (naming cases without a limit circle Kleinian groups and functions).??

The litany continues. There is also a “fourth geometry” with far more surprising prop-
erties than Riemann’s or Lobachevsky’s non-Euclidean geometries. Poincaré had estab-
lished this fourth geometry and its astonishing properties in an 1887 article on the
‘fundamental hypotheses of geometry’, a geometry that implied three propositions ‘so
contrary to our habits of thought that the founders of geometry have denied them’.>* In
his 1891 litany, Poincaré mentions only one of its theorems and not the most surprising:
a real line can be perpendicular to itself”.?* This fourth geometry is the single-sheeted
hyperboloid, which is precisely the two-dimensional hypersurface of de Sitter space, and
one of its degeneracies is the geometry of two-dimensional Minkowski space.?®

Poincaré continues to higher dimensions: from a group-theoretic theorem of Sophus
Lie, we know there are a finite number of constant curvature n-dimensional geometries;
but there are an infinite number of variable curvature Riemannian geometries, all
depending on how the length of a curve is defined. The fundamental hypotheses of
geometry take us much deeper and far beyond the need for a consistent and convenient
metric geometry which can readily be translated into a different metric geometry if the
need arises. At those depths lie the topological issues that Poincaré confronted in all of
his mathematical creations—and that would shortly lead him to the topological link of
the universal covering space and the fundamental group.

Poincaré then poses the following question: if several geometries are possible, which
is true? He goes on to argue to his geometrical conventionalism and the puzzles regard-
ing the hyperbolic world. He would reintroduce this ‘hyperbolic world in his 1895 article
Lespace et la géométrie’,*” coinciding with publication of his first innovations in Analysis
Situs’. There, as in his 1903 fictions featuring the equivalence and hence ‘indistinguishability’
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of the Hyperbolic and Euclidean worlds, Poincaré was getting at the notion of what space
‘is’—not geometrically but topologically. No experiment can ever tell us which geometry
(metric) is ‘true’ (natural) for our space, he argued, because we can only observe results of
measurements involving objects—not of space itself nor of relations between objects and
space. Poincaré established the ‘amorphous continuum’ as the underlying ‘common
basis” of the Euclidean and non-Euclidean metrics we can impose on the space.

As Poincaré emphasised in 1903, the ‘worlds’ so constructed are indistinguishable as
different spaces ‘if we can pass from one to the other by any point transformation what-
ever’, adding that it is in this sense that it would be proper to understand the relativity of
space.?® Understanding the structure of our space, and our physics, requires mathematical
constructions and the theorems of ‘Analysis Situs” by which we delve beyond the impres-
sions of experience.

4.4 THE “TRUE RELATIONS’ THAT PERSIST (A ‘NATURAL
KINSHIP’) VERSUS THE ETHER (A ‘GARMENT")

How did Poincaré engage the rationale, and impact the fate, of the notion of the ether
in physics? This section seeks understanding through Poincaré’s voice by tracing through
his philosophical writings from 1901 to 1905—his 1901 updated self-analysis of his work
and his first two collections of reprinted addresses and articles.

4.4.1 1886-1901: The 1900 Congresses, Poincaré’s 1901 update, Science
and Hypothesis

In 1901, Gosta Mittag-Leffler, the Swedish mathematician and editor of Acta Mathematica,
asked Poincaré to prepare an update of the seventy-five-page self-analysis of his works
that Poincaré had composed early in his career (1884, 1886) for induction into the
Académie des Sciences. Poincaré’s one-hundred-page update covers the fifteen-year
period 1886-1901 and is organised into seven parts.>® It was not published until 1921;
Poincaré never wrote an update for 1901-12. Part 3 of the update, ‘Diverse Questions of
Pure Mathematics’, explains how his need to create analysis situs deepened amid
advances throughout his mathematical corpus. Part 4 of the update, ‘Celestial
Mechanics’, features the concepts and methods (confronting analytic issues with topo-
logical and geometric reasoning) by which he revolutionised celestial mechanics and
which became widely fruitful in astronomy and physics.

Part 5 of the update, ‘Mathematical Physics’, traces his contributions to the theory
of partial differential equations and his critiques of physical theories, from early theoret-
ical doubts about Fresnel’s optical theory to Maxwell’s electromagnetic theory of
light and Lorentz’s theory of the electron—loci of the physicists” ether. The long-
standing concerns related to stellar aberration and Fresnel’s dependence on the index
of refraction, a shift in focus to time intervals involved in the transmission of light, and
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Poincaré’s 1898 considerations of the notion of simultaneity in astronomy and in meas-
uring longitude—all this coalesced in Poincaré’s 1900 metrological interpretation of
‘local time’ in Lorentz’s theory.?°

Part 6 of the update, ‘Philosophy of Science’, features, in a subsection entitled
‘Physics’, both Poincaré’s 1897 ICM address and his 1900 ICP lecture assessing the status
of the ether in mathematical, experimental and theoretical physics.?! After stipulating
that ‘belief in the unity and simplicity of nature...is necessary for science’, Poincaré
insists on the need to distinguish between ‘the foundation [le fond] and the form [la
forme]” in physical theories—a terminology of his own invention that is key to how he
views and contends with the physicists” ether within his mathematical physics:??

The foundation is the existence of certain relationships between inaccessible objects. These
relationships are the only reality we can achieve, and all we can ask for is that there be the same
relationships between these unknown real objects and the images we put in their place.

The form [image, analogy] is only a sort of garment with which we dress this skeleton
[foundation, system of relationships]; we frequently change this garment, to the astonish-
ment of the people of the world...But if the form changes often, the foundation remains.

The hypotheses regarding what I have just called the form cannot be true or false, they
can only be convenient or inconvenient. For example, the existence of the ether, [and] the
existence of external objects, are only convenient hypotheses.??

For Poincaré, there is neither truth nor falsity regarding the existence of the ether; it is
merely a convenient hypothesis, a garment freely chosen and discarded.

Most significant are two conclusions, and a warning, that Poincaré draws from the fact
that the form’ of the physical theory is merely a garment. First is his historical observation
about the strength of science amid theory change: ‘It is for this reason that certain theories
which were believed to be permanently abandoned are reborn from their ashes.” Second is
the conundrum of underdetermination: "There are certain categories of facts which are
equally well explained in two or more different theories, without any experience ever being
able to decide between them.” Indeed, this underdetermination is “particularly true for
mechanistic theories’, for ‘it can be shown that if a phenomenon includes one mechanical
explanation, it will have an infinity’.?>* Poincaré continues with a caution about the particu-
larly dangerous allure of ‘mechanism’ in explaining physical phenomena:

In any case, Mechanism is only one of the garments with which truth can be dressed, and if
it satisfies our mind, we must not attach more importance to it than it deserves. It obliges us
to introduce the hypothesis of auxiliary fluids such as ether; I present some views on the
greater or lesser reality of this fluid.>

An infinite number of possible mechanical ether theories could be constructed and,
indeed, a proliferating number appeared during the previous decade.

In contrast, for Poincaré, the ether is merely a term attached to relations that adhere
in the physical phenomena of electromagnetism. His 1900 ICP address concludes: “We
must not forget that the goal of science is not Mechanism but unity [of explanation and
understanding].” Poincaré refutes the so-called bankruptcy of science (the layman’s view
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that the ‘ephemeral nature of scientific theories’ implies that ‘they are absolutely in
vain’) with the example of Fresnel’s theory of light as ‘movements of the ether’ in con-
trast to Maxwell’s electromagnetic theory of light. The reality of the ether, and the par-
ticular form it took in the different theories, was not the relevant question: ‘Fresnel’s
object was not to know whether there really is an ether. .. his object was to predict optical
phenomena.” Fresnel’s theory enables such prediction today ‘as well as it did before
Maxwell’s time’, not because of the reality of the theoretical objects or mechanical struc-
ture of Fresnel's theory, but because Fresnel’s “differential equations are always true’.
These differential equations ‘express relations, and if the equations remain true, it is
because the relations preserve their reality’. The ‘true relations” among these ‘real objects
which Nature will hide forever from our eyes’, Poincaré insists, ‘are the only reality we
can attain’. What matters is that ‘the same relations shall exist between these objects as
between the images we are forced to put in their place’. We might find one image more
convenient than another, but that choice does not change the underlying ‘relations [that]
are known to us’ and that persist.?®

Also in Part 6, in a subsection entitled ‘Mechanics’, Poincaré explains how concerns
raised in his 1898 paper on the ‘measure of time’ reverberated throughout his 1900
ICPHIL critique of the ‘principles of mechanics’ (shortly reprinted in Science and
Hypothesis), where he asks:

May we not someday be compelled by new experiments to modify or even to abandon [the
principles of mechanics]? These are questions that naturally arise, and the difficulty of solu-
tion is largely due to the fact that treatises on mechanics do not clearly distinguish between
what is experiment, what is mathematical reasoning, what is convention, and what is hypoth-
esis. That is not all.>”

Poincaré argues that these distinct categories of practice enter into the conceptual diffi-
culties within mechanics that he proceeds to itemise:

1. There is no absolute space, and we only conceive of relative motion; and yet in most cases
mechanical facts are enunciated as if there were an absolute space to which they can be
referred.

2. There is no absolute time. When we say that two periods are equal, the statement has no

meaning, and can only acquire a meaning by convention.

It is a conceptually flawed and misleading practice, Poincaré warns, to enunciate
mechanical facts with reference to an absolute space as if it exists. And, since there is no ‘abso-
lute time’ (and since we cannot directly intuit equality for intervals), we can only establish a
‘meaning’ regarding the ‘equality’ of two time intervals by convention. Moreover, he cautions:

3. Not only have we no direct intuition of the equality of two periods, but we have not even
direct intuition of the simultaneity of two events occurring in two different places. I have

explained this in an article entitled ‘Mesure du Temps’.

Poincaré references his 1898 article explaining how the problem of simultaneity of two
distant events is linked to the problem of measuring time, and how astronomers measure the
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velocity of light by supposing that it is constant and the same in all directions; thus, any
statement about the simultaneity of spatially separated events is based on a freely chosen
convention.?® He concludes:

4. Finally, is not our Euclidean geometry in itself only a kind of convention of language?
Mechanical facts might be enunciated with reference to a non-Euclidean space which would
be less convenient but quite as legitimate as our ordinary space; the enunciation would
become more complicated, but it still would be possible.?*

Here is the challenge and the promise of Poincaré’s geometric conventionalism—the
invitation to consider an alternative non-Euclidean geometry for enunciating the facts of
mechanics. Notwithstanding their experiential character, the principles of mechanics
might just as legitimately (and perhaps more fruitfully) be ‘enunciated” with reference to
a ‘space’ that does not have the Euclidean metric.

Poincaré soon wrote the preface to Science and Hypothesis, there distinguishing vari-
ants of hypotheses for geometry, mechanics and the physical sciences:

We therefore conclude that the principles of geometry are only conventions; but these conven-
tions are not arbitrary, and if transported into another world (which I shall call the non-
Euclidean world, and which I shall endeavour to describe), we shall find ourselves compelled
to adopt more of them.

In mechanics we shall be led to analogous conclusions, and we shall see that the principles
of this science, although more directly based on experience, still share the conventional char-
acter of the geometrical postulates. ..

But we now come to the physical sciences, properly so called, and here the scene changes.
We meet with hypotheses of another kind, and we fully grasp how fruitful they are. No doubt
at the outset theories seem unsound, and the history of science shows us how ephemeral they
are; but they do not entirely perish, and of each of them some traces still remain. It is these

traces which we must try to discover, because in them and in them alone is the true reality.*°

The ‘traces’ that remain from now-discarded physical hypotheses—those relations which
remain despite theory change—are the ‘true relations of things’ that are our sole access to
‘true reality’.

Poincaré¢ differentiates between types of hypotheses: (1) ‘Some are verifiable, and when
once confirmed by experiment become truths of great fertility’, for empirically verifiable
hypotheses propel science’s advance. (2) Others ‘may be useful to us in fixing our ideas’
and guide our path to hypotheses of the first kind. (3) Still others “are hypotheses only in
appearance, and reduce to definitions or to conventions in disguise’:

The latter are to be met with especially in mathematics and in the sciences to which it is
applied. From them, indeed, the sciences derive their rigor; such conventions are the result
of the unrestricted activity of the mind, which in this domain recognizes no obstacle. For
here the mind may affirm because it lays down its own laws; but let us clearly understand
that while these laws are imposed on our science, which otherwise could not exist, they are
not imposed on nature. Are they arbitrary? No; for if they were, they would not be fertile.
Experience leaves us our freedom of choice, but it guides us by helping us to discern the
most convenient path to follow.*!
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He distinguishes freely chosen conventions guided by experience from two antithetical
extremes—conventionalism is not nominalism (mere names with no connection to phys-
ical reality), and conventionalism is not positivism (accessing ‘things themselves’).
Poincaré’s argument is unambiguous: the aim of science is ‘the relations between things;
outside those relations there is no reality knowable’ to science.*?

4.4.2 1901-5: The crisis of theory, the 1904 St. Louis Congress, The
Value of Science

Meanwhile, heated debates about the bankruptcy of science had fuelled distortions of
Poincaré’s 1900 ICP and ICPHIL lectures, issues he confronts in Part III, “The Objective
Value of Science’, of his 1905 collection La valeur de la science. Chapters entitled ‘Is Science
Artificial’ and ‘Science and Reality” ask: “Can science teach us the true relations of things?’
Yes, Poincaré answers, distinguishing the ‘form’ taken by a physical theory from the under-
lying ‘foundation’ of ‘true relations’ that remain true across different physical theories.
While the form may change—as between Fresnel’s and Maxwell’s theories of light—the
relations in the background foundation remain. Despite changing scientific hypotheses,
the true relations ‘will be found again under a new disguise in the other theories which
will successively come to reign in place of the old’. Between ‘the hypothetical currents
which Maxwell supposes there are the same relations as between the hypothetical
motions that Fresnel supposed’. Relations that remain true are our link to objective reality.
So, “‘what is the measure of their objectivity?’

Well, it is precisely the same as for our belief in external objects. . . It may be said, for instance,
that the ether is no less real than any external body; to say this body exists is to say there is
between the color of this body; its taste, its smell, an intimate bond, solid and persistent; to
say the ether exists is to say there is a natural kinship between all the optical phenomena, and
neither of the two propositions has less value than the other. .. In sum, the sole objective reality
consists in the relations of things whence results the universal harmony ... [They] are object-
ive because they are, will become, or will remain, common to all thinking beings.

The ‘ether’ for Poincaré is a name attached to the ‘natural kinship [that exists] between all
the optical phenomena’—the objectively real relations that adhere in the phenomena and
persist even with changes in the ‘garment’ of electromagnetic theory.*?

Poincaré wrote these essays for The Value of Science to correct the ‘strangest interpreta-
tions’ (as if it were a defence of the Church against Galileo) of a comment Poincaré made
at the 1900 ICPHIL regarding the truth status of propositions.** His address asserted that
there is no absolute space and that we can only conceive of relative motion. In these essays,
Poincaré explains the contested philosophical issue:

No, there is no absolute space; these two contradictory propositions: “The earth turns round’
and “The earth does not turn round’ are, therefore, neither of them more true than the
other. To affirm one while denying the other, in the kinematic sense, would be to admit the
existence of absolute space.*’
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Poincaré relates the kinematical impossibility of determining absolute motion to the over-
riding question, can science teach us the true relations of things? At issue were profound
challenges to our notions of space and time, high-stakes concerns he assessed in Part I,
“The Mathematical Sciences’, in three reproduced articles: “The Measure of Time’ (1898),
“The Notion of Space’ (1903), and ‘Space and Its Three Dimensions’ (1903)—directly link-
ing 1898, when Poincaré asserted the metrological function of light and the convention-
ality of simultaneity, with 1903, when he completed his series Analysis Situs’ regarding
space of any dimension.

Poincaré’s treatment of the crisis in theoretical physics putting these concepts at risk
comprised Part II, “The Physical Sciences’, which links his 1897 ICM address Analysis and
Physics” with his 1904 address to the St. Louis Congress (reproduced as three chapters
assessing the history, present crisis and future of mathematical physics).*® The St. Louis
address encapsulates Poincaré’s assessment of this crisis and contribution to its resolution
during the intervening seven years, notably his statement of the principle of relativity
and his oft-quoted concluding paragraph announcing the need for ‘an entirely new
mechanics’ in which no apparent velocity can exceed that of light and in which observers
in motion use a watch giving the ‘local time’.*”

A seminar analysing Poincaré’s St. Louis address was held 31 January 1905, opening the
Minkowski-Hilbert seminars on electron theory at Gottingen (held weekly until 31 July
1905); attendees of these seminars included Max Born, Max von Laue and Jakob Laub.
While Poincaré’s (5 June) and Einstein’s (30 June) papers were not treated in this seminar,
the seminar enabled the participants later to recognise the unique origin and substance
of Einstein’s purely kinematical theory of special relativity, in which ether had no role.*®
Our concern here is the unique substance of Poincaré’s paper and how it established the
mathematics of spacetime.

4.5 GOTTINGEN, THE EXPANDING POINCARE CORPUS,
AND MINKOWSKI'S PATH TO SPACETIME

This section discusses Minkowski’s path to spacetime and sheds light on how Poincaré’s
contributions—his profound geometric and topological creations, his geometric conven-
tionalism, his notions of space and time and his creation of spacetime geometry to estab-
lish “true relations’ that endure—became lost or distorted.

4.5.1 1890-1905: Pursuit of Poincaré’s mathematics in the Klein—
Hilbert—-Minkowski seminars

For seventeen years (from 1890 to 1907), Klein ran a series of seminars (whose partici-
pants included Luigi Bianchi, William Osgood, Arthur Sommerfeld, Karl Schwarzschild
and Hermann Weyl) that maintained a focused attention on Poincaré’s works—reading
and lecturing on them, dissecting and critiquing them and absorbing and incorporating
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their methods and results into the practices and sensibilities of the seminar participants.
Poincaré’s continuing creative flow kept Gottingen on high alert for his latest works.

David Hilbert’s 1900 lecture to the second ICM identified twenty-three unsolved prob-
lems of great import, energising the goal to axiomatise and rigorise (thus render ‘obso-
lete’) what came before; but such work ‘drew much of its strength from already flowing
currents in 19th-century mathematical research’.*® We see this strikingly in how Gottingen
mathematicians intensively pursued and absorbed subtleties of Poincaré’s reasoning.

In 1902, Poincaré returned a third time to his fourth geometry, highlighting its strange
properties in his review of Hilbert’s Grundlagen der Geometrie, prodding mathematicians
to puzzle over why Poincaré finds it so important:

Where would this new geometry rank in Hilbert’s classification? We are glad to see that, as
for the geometry of Riemann, all the axioms hold, except those of order and the axiom of
Euclid; but whereas in the geometry of Riemann the axioms of order are false on all lines, in
contrast, in the new geometry, lines fall into two classes, those on which the axioms of order are
true, and those on which they are false.”®

Poincaré would call upon these (‘spacetime’) relationships extensively in his ‘Fifth
Complement’ to Analysis Situs’. Hilbert and his students and colleagues took note, as
would Minkowski, for whom a third chair in mathematics was created at Gottingen in
1902. Hilbert and Minkowski held seminars featuring Poincaré’s physics, focusing in 1903
on Poincaré’s New Methods of Celestial Mechanics and many papers on ‘figures of equilib-
rium of fluid masses’, followed by mechanics (in 1904), and Lorentz’s electron theory (in
1905, beginning with Poincaré’s St. Louis lecture as noted in Section 4.4.2).”"

In contemporaneous mathematics seminars, Minkowski lectured on Poincaré’s ‘Fifth
Complement’ (in late 1904), arithmetic and hyperbolic geometry (11 July 1905) and
Fuchsian and Kleinian groups (25 July 1905). The claim that Minkowski’s 11 July 1905
lecture presented a new model of hyperbolic geometry? is based on an article by Hans
Jansen (from 1909)°? that gave a detailed account of the hyperboloid model. But Jansen
opens with a reference to Poincaré’s (April 1881) Algiers paper®* (where Poincaré derived
the hyperboloid model within arithmetic in relation to his Fuchsian groups and func-
tions), and then references Minkowski’s lecture®® as reporting arithmetic results he
obtained based on the hyperboloid model. Minkowski’s lecture on Poincaré’s Fuchsian
and Kleinian groups two weeks later would engage Poincaré’s (June 1881) hyperbolic ball
model. The focus on Poincaré’s geometric moves was intensifying.

4.5.2 June 1905 through 1908: Poincaré’s four-dimensional geometry,
Minkowski’s Raum und Zeit

Poincaré’s ‘On the Dynamics of the Electron’ (a summary form) was read to the French
academy on 5 June 1905; the paper appeared in January 1906.°° As Darrigol explains,
much in it was ‘novel and important’: a fully covariant formulation of ‘Lorentz’s trans-
formations’ (so named by Poincaré), ‘its relativistic interpretation, its group-theoretic
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formulation, and its application to non-electromagnetic forces of cohesion or gravita-
tion’.”” Theoretical physicist Thibault Damour explains that most of Poincaré’s ‘key new
results’ are in the final section ‘in a rather untransparent and unpedagogical form” but
are mathematically complete: Poincaré had pioneered an ‘elegant 4-dimensional geo-
metrical formulation of Special Relativity’ which Minkowski would expand upon in
1907-8 using more ‘transparent notations’.”®

We turn to Klein's opening lecture (1 November 1905) of the 1905-6 Klein-Hilbert—
Minkowski mathematics seminar.’® Stimulated by newly discovered notes from an 1859
course by Riemann on hypergeometric functions, the seminar would review related
German works in hopes of attaining a proof (based on Riemannian principles) of
Poincaré’s 1883 uniformisation theorem (Hilbert’s Problem #22). They would examine
‘the work of Poincaré, beginning in 1881, published in the first five volumes of Acta
Mathematica’ and, in a few weeks, Klein would report ‘to the [Mathematical Society] on
the advances obtained by Poincaré and their relationship to my own investigations’.®°

At the second session, Minkowski lectured again on Poincaré’s Analysis Situs’, featur-
ing its results on multidimensional manifolds, and H. Mueller reported on Poincaré’s
work on Weierstrassian function theory. During the next five weeks, Gustav Herglotz
gave lectures on Poincaré’s uniformisation and Poincaré’s “Sur les résidus integrals doubles’
and Erhard Schmidt lectured on Poincaré’s ‘Sur les fonctions de deux variables” while, at the
Gottingen Mathematical Society, Ernst Zermelo lectured on Poincaré’s work on bound-
ary-value problems, and Schmidt on Poincaré’s theory of differential equations—all this
and more before the end of 1905.

At the eleventh session (31 January 1906), Klein lectured on Poincaré’s development of
Fuchsian functions, featuring Poincaré’s stance on viewing the substitution group as a
group of non-Euclidean rotations. Klein took the seminar participants through all of
Poincaré’s geometric moves, including a detailed account (‘considered advantageous’
by Minkowski) of Poincaré’s description (quoted in Section 4.3) of how in 1880 he
mapped from a calotte of one sheet of a two-sheeted hyperboloid to the unit disc.®* The
next five sessions continued reviewing Poincaré’s theory of Fuchsian and Kleinian func-
tions and groups, featuring Poincaré’s general theory of automorphic forms that Klein
(after Friedrich Schottky) had incorporated into his own programme with collaborators
Ernst Ritter and Robert Fricke.®

On 13 June 1906, Poincaré submitted his proof of general uniformisation to Acta
Mathematica.®® Unaware of Poincaré’s proof, Klein's seminars continued almost a year
before Klein presented to the Gottingen Mathematical Society a proof of general uni-
formisation proposed by Paul Koebe (a seminar attendee). Koebe would provide a sec-
ond proof on 19 November 1907 that built upon (simplified, axiomatised) subtle novelties in
Poincaré’s proof (which Acta had released earlier that month), novelties immediately
absorbed into mainstream mathematical practice at Gottingen.

Klein's presentation of Koebe’s first proof occurred on the very same day (11 May 1907)
as Minkowski’s first lecture on the equations of electrodynamics. Six months later (5
November 1907, two weeks before Koebe’s celebrated second proof), Minkowski presented a



60 Poincaré’s Mathematical Creations

second lecture, “The Principle of Relativity’,** in which he acknowledged much debt to
Poincaré’s January 1906 (Palermo) paper, highlighting Poincaré’s four-dimensional treat-
ment of gravitation. Minkowski's 1907 paper is evidence that ‘it was Poincaré who most
directly influenced the mathematics of Minkowski’s space-time’.®> And, as a founder of the
Minkowski Institute for Foundational Studies states, it was ‘Poincaré who first realized
(before July 1905) that the Lorentz transformations have a natural geometric interpretation
as rotations in a four-dimensional space whose fourth dimension is time’.*¢

Minkowski brought together Poincaré’s ‘true geometrical relations’ of the four-
dimensional space with the ‘true physical relations’ established by Einstein: as Minkowski
wrote in his Cologne lecture ‘Raum und Zeit’ on 21 September 1908, ‘the credit of first
recognising clearly that the time of one of the electrons is just as good as that of the
other, that is to say, that t and t” are to be treated identically, belongs to A. Einstein’.*” But
Minkowski did not acknowledge Poincaré’s crucial contribution in his Cologne lecture.®
In the context of the Gottingen milieu, Minkowski’s omission is not surprising, for both
Klein and Hilbert, in different ways, had made it standard practice to absorb Poincaré’s
and others” contributions as elements of their own programmes, which they saw as
superseding what came before.*® The coincidence, in terms of both place and timing, of
Koebe’s two proofs of uniformisation with Minkowski’s first two 1907 lectures on the
principle of relativity may have played a role.

4.6 CONCLUDING COMMENTS: 1908-12 AND BEYOND

Minkowski’s November 1907 lecture drawing upon Poincaré’s Palermo paper remained
unpublished until 1915. Poincaré never entered into priority disputes, but in 1912 he was
asked to clarify his stance on the new mechanics. While many interpret Poincaré’s ‘Space
and Time’ paper as rejecting spacetime, mathematician Shlomo Sternberg argues that
Poincaré’s last four paragraphs establish his long-standing ownership of the geometry of
the spacetime manifold. Poincaré died while this paper was in press, as was his paper
‘Why Space Has Three Dimensions’, where he developed a topological concept of
dimension and emphasised how the amorphous continuum becomes space when a met-
ric and other structures are imposed.”® As these works unambiguously show, Poincaré
had broken free from limitations of the physicist’s ether concept, establishing ‘true rela-
tions’ that endure—a foundation for the electromagnetic and gravitational fields of rela-
tivistic and quantum phenomena.

Within a month after attending the 1911 first Solvay Conference as ‘a newcomer to
quantum ideas’, Poincaré published three proofs at different levels of generality of the
necessity of the quantum hypothesis. His proof made some prominent sceptics feel
‘logically compelled to accept the quantum hypothesis in its entirety” and, in the 1920s,
quantum physicists cemented Poincaré’s newly invented ‘integral-over-states” method at
the heart of statistical mechanics, showing it to be ‘completely justified”.”*
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Poincaré also wrote a recommendation for Einstein for a position at ETH Ziirich,
praising Einstein’s unrivalled physical intuition and creativity:

Einstein is one of the most original minds I have known...[The] facility with which he has
adapted to new conceptionsand from which he knows how to draw the consequences. . . trans-
lates immediately in his mind into the prediction of new phenomena, susceptible of being
one day verified by experiment...The future will show more and more the value of Mr.
Einstein, and the university that finds a way to secure this young master is assured of draw-
ing from it great honor.”

And, despite legends to the contrary, Einstein respected Poincaré’s comments on
quantum theory and dynamical systems at the conference, drawing upon them in his
highly creative 1917 paper on quantum chaos.”” Einstein was also well aware that many
philosophers misinterpreted Poincaré’s ideas, noting in 1919 that the German mathemat-
ician and philosopher Eduard Study (an early Klein protégé),”

has treated him quite badly by pinning him down on a truly superficial comment about the
practical significance of Euclidean geometry. Poincaré’s expositions on the place of geometry
within the whole scientific system appear to me to be considerably more profound.”

75 ©

Einstein here picks out precisely the point which others—missing Poincaré’s ‘considerably
more profound’ mathematics and philosophy (and associated cosmological consider-
ations)—distort into a dogma or premise.

Even physicists and mathematicians unaware of Poincaré’s “‘profound’ contributions
were immersed within the mathematical world he helped create, and, however unknow-
ingly, used his tools, methods, reasoning and language. As the mathematician and physi-
cist Hermann Weyl acknowledged in 1931:

We differentiate now between the amorphous continuum and its metrical structures. The
first has retained its a priori character. .. whereas the structural field is completely subjected
to the power-play of the world; being a real entity, Einstein prefers to call it the ether.”®

The amorphous continuum, the mathematics of analysis situs, enables creation of the
various ‘structures’ required in physics. Here we find Poincaré’s legacy: the mathematical
realm and methods of action needed to express physical relations within our space—
however one choses to label them—relations so delicate, rich and precise.
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