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Poincaré’s Mathematical Creations in 

Search of  the ‘True Relations of  Things’

Connemara Doran

Can science teach us the true relations of  things? 

Henri Poincaré, The Value of  Science, 1905.

4.1  INTRODUCTION

‘Mathematical physics and pure analysis . . . mutually interpenetrate and their spirit is the 
same.’1 Addressing (in absentia) the first International Congress of  Mathematicians 
(ICM) in Zürich in 1897, Henri Poincaré (1854–1912)—French mathematician, mathemat-
ical physicist and philosopher—explained his vision of  the mutual needs and shared spirit 
of  these worlds, a perspective shaped by his deep conceptual work at that interface for 
almost two decades. ‘Mathematics have a triple aim’, he argued. It is ‘not enough’ that 
mathematics aims to ‘furnish an instrument for the study of  nature’ so that the physicist 
could ‘know it better’, an aim notably exemplified by advances ‘already rough-hewn’ in 
celestial mechanics and mathematical physics. ‘[Mathematics must also] have a philo-
sophical aim, and, I dare maintain, an aesthetic aim. They must aid the philosopher [and 
physicist] to fathom the notions of  number, of  space, of  time.’2

Pure analysis—a battlefield long engaging the profound subtleties of  infinitesimals 
and infinity, differentiability and continuity, number and the mathematical continuum—
helped secure those advances in understanding nature (notably, Poincaré’s new methods 
of  celestial mechanics), but it also thereby deepened the needs and promises within 
mathematical physics. Mathematics, he asserted, must probe these depths with the ‘aes-
thetic purpose’ of  enabling philosophers and physicists to grasp, articulate and expose 
such subtleties and relations within nature:

The physicist cannot ask of  the analyst to reveal to him a new truth; the [analyst] could at 
most only aid [the physicist] to foresee it. . . . All laws are therefore deduced from experiment; 
but to enunciate them, a special language is needful; ordinary language is too poor, it is 
besides too vague to express relations so delicate, so rich, and so precise. This therefore is 



Poincaré’s Mathematical Creations 46

one reason why the physicist cannot do without mathematics: it furnishes him the only 
language he can speak.3 

Poincaré’s mathematical corpus attested to the richness of  conceptual advance, pure and 
applied, that is possible within the intertwined fields of  analysis and physics. Some 
among his audience would soon come to understand aspects of  his vision and help 
advance it. Poincaré was just beginning another surge in activity at that interface, creat-
ing an array of  utterly new mathematics (and associated philosophical discourse) that 
would ground his response to the radical new challenges within fin-de-siècle physics, a 
crisis within theory that greatly increased the stakes regarding our notions of  number, 
space, time and, therewith, the physicists’ ether.

In 1900, three international Congresses met in Paris—the second ICM, the first 
International Congress of  Physicists (ICP) and the first International Congress of  
Philosophy (ICPHIL)—pushing the boundaries of  open questions in the respective 
disciplines and their interconnections. In mathematics, emphasis on a fully rigorous axio-
matic, strictly deductive, formal approach to proof  advanced in tandem with a drive for 
a mathematics anchored in the certainties of  ‘number’ within arithmetic rather than in 
subtleties (not yet deductively proven) about ‘dimension’ and the ‘mathematical con-
tinuum’ within analysis. In theoretical physics, experimental discoveries and electro-
dynamic theories challenged Newtonian notions of  space, time and matter. Philosophical 
discourse about the meaning, methods and purpose of  science stumbled on questions 
about space, absolute motion and the nature of  the ether.

This chapter assesses the following question: how did Poincaré’s vast corpus of  math-
ematical innovation engage the rationale, and impact the fate, of  the notion of  the ether 
in physics? It asks what Poincaré was thinking, and it seeks understanding through his 
voice (speaking mathematics and philosophy), not through the arguments of  contempor-
aries and later interpreters who did not grasp his full meaning (often completely distort-
ing it), nor through categories foreign to his unique way of  thinking. It finds that Poincaré 
had no ownership of  the physicists’ ether concept, and that he viewed the ether as nei-
ther necessary nor necessarily a hindrance for further advance. Rather, Poincaré attended 
to the profound and subtle needs within physics by creating profound and subtle math-
ematics—utterly new theoretical and interpretive concepts, tools and structures—to cap-
ture the ‘true relations of  things’, rendering the physicists’ ether superfluous to that goal 
while also creating mathematical structures for gravitational and quantum phenomena.

In his scientific practice and philosophy of  science, Poincaré sought the ‘true relations’ 
that adhere in the phenomena—relations that persist irrespective of  the choice of  a met-
ric geometry and a change in physical theory. This chapter is structured to aid under-
standing of  how Poincaré’s lifeworks ‘hang together’4—how they cohere within 
Poincaré’s way of  thinking—which enables us to assess how his work instantiates what 
he means by the ‘true relations of  things’ that unify physics.

Taking a historicist perspective anchored in detailed assessments of  Poincaré’s corpus 
and legacy by mathematicians and historians of  mathematics, the chapter traces key 
strands in Poincaré’s 1880s engagement with the subtleties of  space and time and the 
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structure we know as spacetime, and, concurrently, with the conceptual possibilities that 
opened to him as he sought to master and exploit topological intuitions in creating 
analysis situs (algebraic topology). It traces how Poincaré embedded these utterly new 
geometric and topological ways of  thinking at the heart of  pure mathematics, 
mathematical physics and philosophy.

Section  4.1 explains how Poincaré emphasised the need to break free from the  
geometry habituated by our senses, altered the discourse about the geometry of  physical 
space and set out to create a new mathematics for relations ‘so delicate, so rich, and so 
precise’. Section 4.2 examines Poincaré’s 1891 essay, detailing how he maps the path from 
his 1880 hyperboloid model to his 1887 ‘fourth geometry’—offering different lenses into the 
geometry that would become Minkowski spacetime. Section 4.3 traces through Poincaré’s 
philosophical writings (from 1901 to 1905) and his 1904 St. Louis address on the dynamics 
of  the electron, documenting his view of  the physicists’ ether as a disposable ‘garment’ 
in the search for the ‘true relations’ that persist within natural phenomena. Section 4.4 
examines the reaction to Poincaré’s work at Göttingen, where Poincaré’s corpus was 
assiduously studied and built upon, illustrating how Poincaré’s geometric creations from 
1880 to his four-dimensional geometric interpretation of  the Lorentz transformation 
was a ready resource for Hermann Minkowski as he developed his spacetime geometry 
based on Einstein’s theory of  special relativity. Section 4.5 offers concluding comments 
about Poincaré’s last year of  life and his legacy, witnessing a juxtaposition of  his works 
on space and time, analysis situs and dimension, quantum theory and statistical 
mechanics, and documenting the profundity that Poincaré and Einstein recognised in 
each other’s works.

4.2  SEEKING A MATHEMATICS TO EXPRESS ‘RELATIONS 
SO DELICATE, SO RICH, AND SO PRECISE’

The question of  the geometry of  physical space was rooted in early nineteenth-century 
discoveries regarding non-Euclidean geometries, intrinsic curvature and topological 
shape. Mathematicians mid-century were intrigued by topological possibilities for our 
space, but philosophers and physicists focused more on the question whether it might 
exhibit a positive or negative curvature at an astronomically large scale—whether ours 
might be a spherical world (with positive curvature) or a hyperbolic world (with negative 
curvature) rather than a Euclidean one (with zero curvature). The notion that one might 
empirically measure the curvature of  our space by means such as stellar parallax became 
a tantalising possibility, indeed, an increasingly confident and explicit goal within 
informed scientific communities in the 1890s.

In an 1891 essay entitled ‘Les géométries non euclidiennes’, Poincaré radically altered the 
possibilities and stakes regarding the question of  the ‘true’ geometry and topology of  
our space and how we can come to know it.5 In a highly provocative thought experi-
ment, Poincaré explained how intelligent creatures from a hyperbolic world, whose 



Poincaré’s Mathematical Creations 48

geometry is based on its freely chosen non-Euclidean conventions, would, if  transported 
to our world, observe the same phenomena we do but express the physical laws differ-
ently. We, likewise, would easily enunciate the laws of  their world using our Euclidean 
conventions. Yet, in each such world, while understanding of  the ‘true relations’ of  its 
physical phenomena would be secure, no experiment would be able to determine by 
metric means alone the actual geometry of  that world.

Poincaré’s ‘fiction’ of  the hyperbolic world (introduced in his ‘Letter to Mouret’)6 
challenged the validity of  the assumptions of  geometric empiricism—the claim that experi-
ment (measurement) was sufficient to determine the geometry of  cosmological space—
while at the same time offering an alternative epistemology (geometric conventionalism) 
and promising a new mathematics, a new type of  geometric reasoning (which he called 
‘analysis situs’) that would help us ‘find a way’ to secure knowledge of  the geometry and 
topology of  spaces of  higher dimension.7

As Poincaré explained in 1901, deep challenges throughout his varied research pushed 
him to engage in this ongoing mathematical quest and encouraged his trust in profound 
rewards for mathematics and physics: ‘As for me, all the diverse paths on which I was 
successively engaged [1879–91] have led me to Analysis Situs.’8 Poincaré recognised that 
mathematics, physics and celestial mechanics needed the certainty of  theorems accessible 
only with this new type of  reasoning.

Poincaré had entered into a philosophical discourse, couched in the language of  neo-
Kantian philosophy, which sought foundations for the geometry of  our space. The dis-
course first centred on Hermann von Helmholtz’s notion of  freely moving rigid 
(measuring) bodies, then on infinitesimal transformation groups, becoming known as 
the Helmholtz–Lie (classical) space problem.9 Poincaré saw the need to escape its metrical 
(measurement) requirements, and his philosophical stance was inextricably tied to his 
1887 establishment of  the ‘fourth geometry’ (explained in Section 4.3) and to the new 
mathematics he was creating.10

Poincaré’s ‘Analysis Situs’ requires that our imagination break free from the geometry 
habituated by our senses, ignore metrical properties of  geometric objects (properties 
involving measurement of  distance and angles) and pursue the difficult art of  ‘reasoning 
well based on badly drawn figures’ by focusing on relations unchanged by any continu-
ous deformation.11 The years 1887–91 mark the momentous interval during which 
Poincaré set himself  the task to establish this new field of  mathematics for the study of  
space. By 1895, Poincaré had single-handedly created the field called ‘algebraic topology’, 
developing over the next decade entirely new concepts, tools and intuitions to assess 
topological spaces of  three and higher dimensions.12

The mathematical concept of  the amorphous continuum provides the basis (realm of  
action) for mathematicians to rigorously conceptualise in higher dimensions, learning 
how we can ‘supplement’ our senses so as to reason in ‘hyperspace’. The distinction 
between the mathematical (amorphous) continuum and the physical continuum of  
experience is crucial, as is Poincaré’s emphasis that we do not have intuition about space 
itself. We hear Poincaré’s philosophical voice, speaking mathematics, in the section entitled 
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‘Qualitative Geometry’ in his 1903 article ‘Space and Its Three Dimensions’,13 which was 
reprinted as Chapter 3, ‘The Notion of  Space’, in his 1907 collection of  essays, The Value 
of  Science:

Euclidean space is not a form imposed upon our sensibility, since we can imagine non-
Euclidean space; but the two spaces, Euclidean and non-Euclidean, have a common basis, 
that amorphous continuum of  which I spoke in the beginning. From this continuum we can 
get either Euclidean space or Lobachevskian space . . . This continuum has a certain number 
of  properties, exempt from all idea of  measurement . . . The theorems of  analysis situs have, 
therefore, this peculiarity that they would remain true if  the figures were copied by an inexpert 
draftsman who should grossly change all the proportions and replace the straights by lines 
more or less sinuous. In mathematical terms, they are not altered by any ‘point-transforma-
tion’ whatsoever . . . Of  all the theorems of  analysis situs, the most important is that which is 
expressed in saying that space has three dimensions.14

Key to understanding subtleties of  this need to pass from the world of  the amorphous 
continuum to the world of  space and geometry is Poincaré’s claim that experience alone 
cannot ‘engender mathematical notions’, in particular the notion of  mathematical con-
tinuity itself. Adding a metric structure to the amorphous continuum yields a space with 
attendant cosmological and epistemological implications.

In his works in analysis situs, Poincaré was after a precise mathematical notion of  
dimensionality anchored in the subtle conceptual tools and theorems he was creating. As 
he explained in 1908 to the fifth ICM in Rome, such deep penetration into unexplored ter-
rains of  thought can ‘enable us really to see into hyperspace and to supplement our 
senses’.15 Poincaré insisted that analysis situs is ‘the only true domain of  geometric intui-
tion’ and, once accessed, promised entry into vast new realms of  mathematical activity.16

4.3  POINCARÉ’S 1891 ESSAY, FROM HIS 1880 
HYPERBOLOID MODEL TO HIS 1887 FOURTH 

GEOMETRY: GEOMETRIC REASONING UNTETHERED, 
SPACE ‘STRUCTURES’ ENGAGED

Poincaré’s essay ‘Les géométries non euclidiennes’ appeared 15 December 1891 in a recently 
launched French journal with a diverse scientific audience for whom Poincaré sought to 
capture the mathematical and epistemological challenges confronting a geometric (metrically 
empirical) understanding of  space.17 Many scholars who assess the geometric conven-
tionalism Poincaré introduced there focus on its conclusion, namely that, since hyper-
bolic and Euclidean metrics are inter-translatable, one can choose the simplest, Euclidean 
geometry. But Poincaré takes us to that conclusion by making a much deeper argument 
about geometry and what it yet lacks.

In a breathless litany, he takes us through Riemann’s spherical world (finite without 
boundary) and the accelerating mathematical innovations that had radically altered the 
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nature and role of  geometry throughout mathematics and in the formulation of  physical 
laws. Poincaré repeatedly asserts that we must release geometry from experiences that 
restrict our thinking—by contemplating how beings in a hyperbolic three-dimensional 
world would create their own geometry, and by recognising what mathematicians have 
already done by means of  unrestricted geometric reasoning. Immediately after establish-
ing a dictionary between the three-dimensional hyperbolic and Euclidean spaces, he 
states, ‘But this is not all’ and starts recounting the fruits of  these striking shifts in geo-
metric reasoning.18

‘Consider what Klein and myself  have done by using them in the integration of  linear 
equations.’ A decade earlier Poincaré had changed the essence of  hyperbolic geometry 
from a mere curiosity of  the geometer and an intriguing ‘possibility’ to a profound 
necessity for the analyst that lay hidden within much of  mathematics. In 1880, examining 
issues regarding integrals of  linear differential equations with algebraic coefficients, 
Poincaré had created the theory of  automorphic functions, exploiting a series of  deep 
and subtle insights all the way to the concept of  the universal cover and to establishing 
and proving the uniformisation theorem that classified solutions of  all analytic functions 
(as rational, elliptic or Fuchsian functions). As the historian of  mathematics Jeremy Gray 
argues, Poincaré had devised a unique way of  ‘deriving’ the essence of  Riemann sur-
faces; he constructed them naturally from discontinuous groups, obtaining them as quo-
tient spaces of  the unit disc (rather than as branched coverings of  the Riemann sphere), 
once he had the wonderful insight that the Möbius transformations he had used to define 
the class of  Fuchsian functions were identical to the groups of  motions of  hyperbolic 
geometry. Poincaré’s ‘almost effortless introduction of  Riemann surfaces’ into his analysis 
was viewed as a ‘dramatic novelty . . . especially since Riemann’s ideas were still generally 
considered obscure and lacking in rigor’.19

A key move in his 1880 epochal advance occurred when Poincaré, while engaging 
research on indefinite ternary quadratic forms within number theory, conceptualised a 
new model of  the hyperbolic plane, a hyperboloid model that projected to the open unit 
disc—establishing the existence of  his Fuchsian groups and hyperbolic geometry at the 
heart of  pure mathematics.20 Poincaré’s conceptualisation here is of  a completely different 
nature from the establishment of  Weierstrass coordinates, the Helmholtz hyperboloid 
model and other such models of  much earlier date.21 Poincaré details how to picture and 
construct this profound relationship in a self-analysis of  his work (1884, 1886):

One of  the most important problems in the subject of  indefinite ternary quadratic forms is 
the study of  the discontinuous groups formed by the similarity substitutions, that is, linear 
substitutions which preserve the form. Let F(x, y, z) be an indefinite quadratic form.

We can choose the constant K so that F(x, y, z) = K represents a hyperboloid of  two sheets. 
The similarity substitutions then map a point on the hyperboloid to another point on the 
same sheet and, since the group is discontinuous, the hyperboloid becomes partitioned into 
infinitely many curvilinear polygons whose sides are diametric sections of  the surface. A 
similarity substitution changes each polygon into another. We now take a perspective view 
by placing the eye at an umbilic of  the surface and taking the plane of  projection to be a 
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circular section. One sheet of  the hyperboloid is projected inside a circle, and the polygons 
drawn on this sheet project to curvilinear polygons bounded by circular arcs of  the kind we 
have discussed in the theory of  Fuchsian groups. Thus the study of  similarity substitutions of  
quadratic forms reduces to that of  Fuchsian groups, which is an unexpected rapprochement 
between two very different theories, and a new application of  non-Euclidean geometry.22

Poincaré’s surprising linkage of  his hyperbolic disc and the two-sheeted hyperboloid cre-
ated a new world of  action within mathematics of  profound power and import. The 
indefinite quadratic form producing the figure Poincaré instructs the reader to visualise 
(and construct) is equivalent to the indefinite quadratic form of  flat two-dimensional 
spacetime; we will see that Minkowski carefully studied Poincaré’s reasoning from these 
1880 insights to Poincaré’s 1905–6 creation of  the four-dimensional metric (indefinite 
quadratic form) linking light, space and time.

Upon discovering Poincaré’s theory of  Fuchsian (automorphic) functions, Felix Klein 
initiated a correspondence with Poincaré the next day (12 June 1881), claiming in his sec-
ond letter that Poincaré’s ‘analogy with non-Euclidean geometry does not hold’ for more 
complicated cases without a limit circle. Poincaré immediately demonstrated that his 
analogy with non-Euclidean geometry does hold by creating his three-dimensional ‘hyper-
bolic ball’ model (the hyperbolic world), and fully generalising his theory of  automorphic 
functions to all cases (naming cases without a limit circle Kleinian groups and functions).23

The litany continues. There is also a ‘fourth geometry’ with far more surprising prop-
erties than Riemann’s or Lobachevsky’s non-Euclidean geometries. Poincaré had estab-
lished this fourth geometry and its astonishing properties in an 1887 article on the 
‘fundamental hypotheses of  geometry’, a geometry that implied three propositions ‘so 
contrary to our habits of  thought that the founders of  geometry have denied them’.24 In 
his 1891 litany, Poincaré mentions only one of  its theorems and ‘not the most surprising: 
a real line can be perpendicular to itself ’.25 This fourth geometry is the single-sheeted 
hyperboloid, which is precisely the two-dimensional hypersurface of  de Sitter space, and 
one of  its degeneracies is the geometry of  two-dimensional Minkowski space.26

Poincaré continues to higher dimensions: from a group-theoretic theorem of  Sophus 
Lie, we know there are a finite number of  constant curvature n-dimensional geometries; 
but there are an infinite number of  variable curvature Riemannian geometries, all 
depending on how the length of  a curve is defined. The fundamental hypotheses of  
geometry take us much deeper and far beyond the need for a consistent and convenient 
metric geometry which can readily be translated into a different metric geometry if  the 
need arises. At those depths lie the topological issues that Poincaré confronted in all of  
his mathematical creations—and that would shortly lead him to the topological link of  
the universal covering space and the fundamental group.

Poincaré then poses the following question: if  several geometries are possible, which 
is true? He goes on to argue to his geometrical conventionalism and the puzzles regard-
ing the hyperbolic world. He would reintroduce this ‘hyperbolic world’ in his 1895 article 
‘L’espace et la géométrie’,27 coinciding with publication of  his first innovations in ‘Analysis 
Situs’. There, as in his 1903 fictions featuring the equivalence and hence ‘indistinguishability’ 
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of  the Hyperbolic and Euclidean worlds, Poincaré was getting at the notion of  what space 
‘is’—not geometrically but topologically. No experiment can ever tell us which geometry 
(metric) is ‘true’ (natural) for our space, he argued, because we can only observe results of  
measurements involving objects—not of  space itself  nor of  relations between objects and 
space. Poincaré established the ‘amorphous continuum’ as the underlying ‘common 
basis’ of  the Euclidean and non-Euclidean metrics we can impose on the space.

As Poincaré emphasised in 1903, the ‘worlds’ so constructed are indistinguishable as 
different spaces ‘if  we can pass from one to the other by any point transformation what-
ever’, adding that it is in this sense that it would be proper to understand the relativity of  
space.28 Understanding the structure of  our space, and our physics, requires mathematical 
constructions and the theorems of  ‘Analysis Situs’ by which we delve beyond the impres-
sions of  experience.

4.4  THE ‘TRUE RELATIONS’ THAT PERSIST (A ‘NATURAL 
KINSHIP’) VERSUS THE ETHER (A ‘GARMENT’)

How did Poincaré engage the rationale, and impact the fate, of  the notion of  the ether 
in physics? This section seeks understanding through Poincaré’s voice by tracing through 
his philosophical writings from 1901 to 1905—his 1901 updated self-analysis of  his work 
and his first two collections of  reprinted addresses and articles.

4.4.1  1886–1901: The 1900 Congresses, Poincaré’s 1901 update, Science 
and Hypothesis

In 1901, Gösta Mittag-Leffler, the Swedish mathematician and editor of  Acta Mathematica, 
asked Poincaré to prepare an update of  the seventy-five-page self-analysis of  his works 
that Poincaré had composed early in his career (1884, 1886) for induction into the 
Académie des Sciences. Poincaré’s one-hundred-page update covers the fifteen-year 
period 1886–1901 and is organised into seven parts.29 It was not published until 1921; 
Poincaré never wrote an update for 1901–12. Part 3 of  the update, ‘Diverse Questions of  
Pure Mathematics’, explains how his need to create analysis situs deepened amid 
advances throughout his mathematical corpus. Part  4 of  the update, ‘Celestial 
Mechanics’, features the concepts and methods (confronting analytic issues with topo-
logical and geometric reasoning) by which he revolutionised celestial mechanics and 
which became widely fruitful in astronomy and physics.

Part 5 of  the update, ‘Mathematical Physics’, traces his contributions to the theory 
of  partial differential equations and his critiques of  physical theories, from early theoret-
ical doubts about Fresnel’s optical theory to Maxwell’s electromagnetic theory of  
light and Lorentz’s theory of  the electron—loci of  the physicists’ ether. The long-
standing concerns related to stellar aberration and Fresnel’s dependence on the index 
of  refraction, a shift in focus to time intervals involved in the transmission of  light, and 
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Poincaré’s 1898 considerations of  the notion of  simultaneity in astronomy and in meas-
uring longitude—all this coalesced in Poincaré’s 1900 metrological interpretation of  
‘local time’ in Lorentz’s theory.30

Part 6 of  the update, ‘Philosophy of  Science’, features, in a subsection entitled 
‘Physics’, both Poincaré’s 1897 ICM address and his 1900 ICP lecture assessing the status 
of  the ether in mathematical, experimental and theoretical physics.31 After stipulating 
that ‘belief  in the unity and simplicity of  nature . . . is necessary for science’, Poincaré 
insists on the need to distinguish between ‘the foundation [le fond] and the form [la 
forme]’ in physical theories—a terminology of  his own invention that is key to how he 
views and contends with the physicists’ ether within his mathematical physics:32

The foundation is the existence of  certain relationships between inaccessible objects. These 
relationships are the only reality we can achieve, and all we can ask for is that there be the same 
relationships between these unknown real objects and the images we put in their place. 

The form [image, analogy] is only a sort of  garment with which we dress this skeleton 
[foundation, system of  relationships]; we frequently change this garment, to the astonish-
ment of  the people of  the world . . . But if  the form changes often, the foundation remains.

The hypotheses regarding what I have just called the form cannot be true or false, they 
can only be convenient or inconvenient. For example, the existence of  the ether, [and] the 
existence of  external objects, are only convenient hypotheses.33 

For Poincaré, there is neither truth nor falsity regarding the existence of  the ether; it is 
merely a convenient hypothesis, a garment freely chosen and discarded.

Most significant are two conclusions, and a warning, that Poincaré draws from the fact 
that the ‘form’ of  the physical theory is merely a garment. First is his historical observation 
about the strength of  science amid theory change: ‘It is for this reason that certain theories 
which were believed to be permanently abandoned are reborn from their ashes.’ Second is 
the conundrum of  underdetermination: ‘There are certain categories of  facts which are 
equally well explained in two or more different theories, without any experience ever being 
able to decide between them.’ Indeed, this underdetermination is ‘particularly true for 
mechanistic theories’, for ‘it can be shown that if  a phenomenon includes one mechanical 
explanation, it will have an infinity’.34 Poincaré continues with a caution about the particu-
larly dangerous allure of  ‘mechanism’ in explaining physical phenomena:

In any case, Mechanism is only one of  the garments with which truth can be dressed, and if  
it satisfies our mind, we must not attach more importance to it than it deserves. It obliges us 
to introduce the hypothesis of  auxiliary fluids such as ether; I present some views on the 
greater or lesser reality of  this fluid.35

An infinite number of  possible mechanical ether theories could be constructed and, 
indeed, a proliferating number appeared during the previous decade.

In contrast, for Poincaré, the ether is merely a term attached to relations that adhere 
in the physical phenomena of  electromagnetism. His 1900 ICP address concludes: ‘We 
must not forget that the goal of  science is not Mechanism but unity [of  explanation and 
understanding].’ Poincaré refutes the so-called bankruptcy of  science (the layman’s view 
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that the ‘ephemeral nature of  scientific theories’ implies that ‘they are absolutely in 
vain’) with the example of  Fresnel’s theory of  light as ‘movements of  the ether’ in con-
trast to Maxwell’s electromagnetic theory of  light. The reality of  the ether, and the par-
ticular form it took in the different theories, was not the relevant question: ‘Fresnel’s 
object was not to know whether there really is an ether . . . his object was to predict optical 
phenomena.’ Fresnel’s theory enables such prediction today ‘as well as it did before 
Maxwell’s time’, not because of  the reality of  the theoretical objects or mechanical struc-
ture of  Fresnel’s theory, but because Fresnel’s ‘differential equations are always true’. 
These differential equations ‘express relations, and if  the equations remain true, it is 
because the relations preserve their reality’. The ‘true relations’ among these ‘real objects 
which Nature will hide forever from our eyes’, Poincaré insists, ‘are the only reality we 
can attain’. What matters is that ‘the same relations shall exist between these objects as 
between the images we are forced to put in their place’. We might find one image more 
convenient than another, but that choice does not change the underlying ‘relations [that] 
are known to us’ and that persist.36

Also in Part 6, in a subsection entitled ‘Mechanics’, Poincaré explains how concerns 
raised in his 1898 paper on the ‘measure of  time’ reverberated throughout his 1900 
ICPHIL critique of  the ‘principles of  mechanics’ (shortly reprinted in Science and 
Hypothesis), where he asks:

May we not someday be compelled by new experiments to modify or even to abandon [the 
principles of  mechanics]? These are questions that naturally arise, and the difficulty of  solu-
tion is largely due to the fact that treatises on mechanics do not clearly distinguish between 
what is experiment, what is mathematical reasoning, what is convention, and what is hypoth-
esis. That is not all.37

Poincaré argues that these distinct categories of  practice enter into the conceptual diffi-
culties within mechanics that he proceeds to itemise:

	1.	 There is no absolute space, and we only conceive of  relative motion; and yet in most cases 
mechanical facts are enunciated as if  there were an absolute space to which they can be 
referred.

	2.	 There is no absolute time. When we say that two periods are equal, the statement has no 
meaning, and can only acquire a meaning by convention.

It is a conceptually flawed and misleading practice, Poincaré warns, to enunciate 
mechanical facts with reference to an absolute space as if  it exists. And, since there is no ‘abso-
lute time’ (and since we cannot directly intuit equality for intervals), we can only establish a 
‘meaning’ regarding the ‘equality’ of  two time intervals by convention. Moreover, he cautions:

	3.	 Not only have we no direct intuition of  the equality of  two periods, but we have not even 
direct intuition of  the simultaneity of  two events occurring in two different places. I have 
explained this in an article entitled ‘Mesure du Temps’.

Poincaré references his 1898 article explaining how the problem of  simultaneity of  two 
distant events is linked to the problem of  measuring time, and how astronomers measure the 
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velocity of  light by supposing that it is constant and the same in all directions; thus, any 
statement about the simultaneity of  spatially separated events is based on a freely chosen 
convention.38 He concludes:

	4.	 Finally, is not our Euclidean geometry in itself  only a kind of  convention of  language? 
Mechanical facts might be enunciated with reference to a non-Euclidean space which would 
be less convenient but quite as legitimate as our ordinary space; the enunciation would 
become more complicated, but it still would be possible.39

Here is the challenge and the promise of  Poincaré’s geometric conventionalism—the 
invitation to consider an alternative non-Euclidean geometry for enunciating the facts of  
mechanics. Notwithstanding their experiential character, the principles of  mechanics 
might just as legitimately (and perhaps more fruitfully) be ‘enunciated’ with reference to 
a ‘space’ that does not have the Euclidean metric.

Poincaré soon wrote the preface to Science and Hypothesis, there distinguishing vari-
ants of  hypotheses for geometry, mechanics and the physical sciences:

We therefore conclude that the principles of  geometry are only conventions; but these conven-
tions are not arbitrary, and if  transported into another world (which I shall call the non-
Euclidean world, and which I shall endeavour to describe), we shall find ourselves compelled 
to adopt more of  them. 

In mechanics we shall be led to analogous conclusions, and we shall see that the principles 
of  this science, although more directly based on experience, still share the conventional char-
acter of  the geometrical postulates . . . 

But we now come to the physical sciences, properly so called, and here the scene changes. 
We meet with hypotheses of  another kind, and we fully grasp how fruitful they are. No doubt 
at the outset theories seem unsound, and the history of  science shows us how ephemeral they 
are; but they do not entirely perish, and of  each of  them some traces still remain. It is these 
traces which we must try to discover, because in them and in them alone is the true reality.40

The ‘traces’ that remain from now-discarded physical hypotheses—those relations which 
remain despite theory change—are the ‘true relations of  things’ that are our sole access to 
‘true reality’.

Poincaré differentiates between types of  hypotheses: (1) ‘Some are verifiable, and when 
once confirmed by experiment become truths of  great fertility’, for empirically verifiable 
hypotheses propel science’s advance. (2) Others ‘may be useful to us in fixing our ideas’ 
and guide our path to hypotheses of  the first kind. (3) Still others ‘are hypotheses only in 
appearance, and reduce to definitions or to conventions in disguise’:

The latter are to be met with especially in mathematics and in the sciences to which it is 
applied. From them, indeed, the sciences derive their rigor; such conventions are the result 
of  the unrestricted activity of  the mind, which in this domain recognizes no obstacle. For 
here the mind may affirm because it lays down its own laws; but let us clearly understand 
that while these laws are imposed on our science, which otherwise could not exist, they are 
not imposed on nature. Are they arbitrary? No; for if  they were, they would not be fertile. 
Experience leaves us our freedom of  choice, but it guides us by helping us to discern the 
most convenient path to follow.41
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He distinguishes freely chosen conventions guided by experience from two antithetical 
extremes—conventionalism is not nominalism (mere names with no connection to phys-
ical reality), and conventionalism is not  positivism (accessing ‘things themselves’). 
Poincaré’s argument is unambiguous: the aim of  science is ‘the relations between things; 
outside those relations there is no reality knowable’ to science.42

4.4.2  1901–5: The crisis of theory, the 1904 St. Louis Congress, The 
Value of  Science

Meanwhile, heated debates about the bankruptcy of  science had fuelled distortions of  
Poincaré’s 1900 ICP and ICPHIL lectures, issues he confronts in Part III, ‘The Objective 
Value of  Science’, of  his 1905 collection La valeur de la science. Chapters entitled ‘Is Science 
Artificial’ and ‘Science and Reality’ ask: ‘Can science teach us the true relations of  things?’ 
Yes, Poincaré answers, distinguishing the ‘form’ taken by a physical theory from the under-
lying ‘foundation’ of  ‘true relations’ that remain true across different physical theories. 
While the form may change—as between Fresnel’s and Maxwell’s theories of  light—the 
relations in the background foundation remain. Despite changing scientific hypotheses, 
the true relations ‘will be found again under a new disguise in the other theories which 
will successively come to reign in place of  the old’. Between ‘the hypothetical currents 
which Maxwell supposes there are the same relations as between the hypothetical 
motions that Fresnel supposed’. Relations that remain true are our link to objective reality. 
So, ‘what is the measure of  their objectivity?’

Well, it is precisely the same as for our belief  in external objects . . . It may be said, for instance, 
that the ether is no less real than any external body; to say this body exists is to say there is 
between the color of  this body, its taste, its smell, an intimate bond, solid and persistent; to 
say the ether exists is to say there is a natural kinship between all the optical phenomena, and 
neither of  the two propositions has less value than the other . . . In sum, the sole objective reality 
consists in the relations of  things whence results the universal harmony . . . [They] are object-
ive because they are, will become, or will remain, common to all thinking beings.

The ‘ether’ for Poincaré is a name attached to the ‘natural kinship [that exists] between all 
the optical phenomena’—the objectively real relations that adhere in the phenomena and 
persist even with changes in the ‘garment’ of  electromagnetic theory.43

Poincaré wrote these essays for The Value of  Science  to correct the ‘strangest interpreta-
tions’ (as if  it were a defence of  the Church against Galileo) of  a comment Poincaré made 
at the 1900 ICPHIL regarding the truth status of  propositions.44 His address asserted that 
there is no absolute space and that we can only conceive of  relative motion. In these essays, 
Poincaré explains the contested philosophical issue:

No, there is no absolute space; these two contradictory propositions: ‘The earth turns round’ 
and ‘The earth does not turn round’ are, therefore, neither of  them more true than the 
other. To affirm one while denying the other, in the kinematic sense, would be to admit the 
existence of  absolute space.45
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Poincaré relates the kinematical impossibility of  determining absolute motion to the over-
riding question, can science teach us the true relations of  things? At issue were profound 
challenges to our notions of  space and time, high-stakes concerns he assessed in Part I, 
‘The Mathematical Sciences’, in three reproduced articles: ‘The Measure of  Time’ (1898), 
‘The Notion of  Space’ (1903), and ‘Space and Its Three Dimensions’ (1903)—directly link-
ing 1898, when Poincaré  asserted the metrological function of  light and the convention-
ality of  simultaneity, with 1903, when he completed his series ‘Analysis Situs’ regarding 
space of  any dimension.

Poincaré’s treatment of  the crisis in theoretical physics putting these concepts at risk 
comprised Part II, ‘The Physical Sciences’, which links his 1897 ICM address ‘Analysis and 
Physics’ with his 1904 address to the St. Louis Congress (reproduced as three chapters 
assessing the history, present crisis and future of  mathematical physics).46 The St. Louis 
address encapsulates Poincaré’s assessment of  this crisis and contribution to its resolution 
during the intervening seven years, notably his statement of  the principle of  relativity 
and his oft-quoted concluding paragraph announcing the need for ‘an entirely new 
mechanics’ in which no apparent velocity can exceed that of  light and in which observers 
in motion use a watch giving the ‘local time’.47

A seminar analysing Poincaré’s St. Louis address was held 31 January 1905, opening the 
Minkowski–Hilbert seminars on electron theory at Göttingen (held weekly until 31 July 
1905); attendees of  these seminars included Max Born, Max von Laue and Jakob Laub. 
While Poincaré’s (5 June) and Einstein’s (30 June) papers were not treated in this seminar, 
the seminar enabled the participants later to recognise the unique origin and substance 
of  Einstein’s purely kinematical theory of  special relativity, in which ether had no role.48 
Our concern here is the unique substance of  Poincaré’s paper and how it established the 
mathematics of  spacetime.

4.5  GÖTTINGEN, THE EXPANDING POINCARÉ CORPUS, 
AND MINKOWSKI’S PATH TO SPACETIME

This section discusses Minkowski’s path to spacetime and sheds light on how Poincaré’s 
contributions—his profound geometric and topological creations, his geometric conven-
tionalism, his notions of  space and time and his creation of  spacetime geometry to estab-
lish ‘true relations’ that endure—became lost or distorted.

4.5.1  1890–1905: Pursuit of Poincaré’s mathematics in the Klein–
Hilbert–Minkowski seminars

For seventeen years (from 1890 to 1907), Klein ran a series of  seminars (whose partici-
pants included Luigi Bianchi, William Osgood, Arthur Sommerfeld, Karl Schwarzschild 
and Hermann Weyl) that maintained a focused attention on Poincaré’s works—reading 
and lecturing on them, dissecting and critiquing them and absorbing and incorporating 



Poincaré’s Mathematical Creations 58

their methods and results into the practices and sensibilities of  the seminar participants. 
Poincaré’s continuing creative flow kept Göttingen on high alert for his latest works.

David Hilbert’s 1900 lecture to the second ICM identified twenty-three unsolved prob-
lems of  great import, energising the goal to axiomatise and rigorise (thus render ‘obso-
lete’) what came before; but such work ‘drew much of  its strength from already flowing 
currents in 19th-century mathematical research’.49 We see this strikingly in how Göttingen 
mathematicians intensively pursued and absorbed subtleties of  Poincaré’s reasoning.

In 1902, Poincaré returned a third time to his fourth geometry, highlighting its strange 
properties in his review of  Hilbert’s Grundlagen der Geometrie, prodding mathematicians 
to puzzle over why Poincaré finds it so important:

Where would this new geometry rank in Hilbert’s classification? We are glad to see that, as 
for the geometry of  Riemann, all the axioms hold, except those of  order and the axiom of  
Euclid; but whereas in the geometry of  Riemann the axioms of  order are false on all lines, in 
contrast, in the new geometry, lines fall into two classes, those on which the axioms of  order are 
true, and those on which they are false.50 

Poincaré would call upon these (‘spacetime’) relationships extensively in his ‘Fifth 
Complement’ to ‘Analysis Situs’. Hilbert and his students and colleagues took note, as 
would Minkowski, for whom a third chair in mathematics was created at Göttingen in 
1902. Hilbert and Minkowski held seminars featuring Poincaré’s physics, focusing in 1903 
on Poincaré’s New Methods of  Celestial Mechanics and many papers on ‘figures of  equilib-
rium of  fluid masses’, followed by mechanics (in 1904), and Lorentz’s electron theory (in 
1905, beginning with Poincaré’s St. Louis lecture as noted in Section 4.4.2).51

In contemporaneous mathematics seminars, Minkowski lectured on Poincaré’s ‘Fifth 
Complement’ (in late 1904), arithmetic and hyperbolic geometry (11 July 1905) and 
Fuchsian and Kleinian groups (25 July 1905). The claim that Minkowski’s 11 July 1905 
lecture presented a new model of  hyperbolic geometry52 is based on an article by Hans 
Jansen (from 1909)53 that gave a detailed account of  the hyperboloid model. But Jansen 
opens with a reference to Poincaré’s (April 1881) Algiers paper54 (where Poincaré derived 
the hyperboloid model within arithmetic in relation to his Fuchsian groups and func-
tions), and then references Minkowski’s lecture55 as reporting arithmetic results he 
obtained based on the hyperboloid model. Minkowski’s lecture on Poincaré’s Fuchsian 
and Kleinian groups two weeks later would engage Poincaré’s ( June 1881) hyperbolic ball 
model. The focus on Poincaré’s geometric moves was intensifying.

4.5.2  June 1905 through 1908: Poincaré’s four-dimensional geometry, 
Minkowski’s Raum und Zeit

Poincaré’s ‘On the Dynamics of  the Electron’ (a summary form) was read to the French 
academy on 5 June 1905; the paper appeared in January 1906.56 As Darrigol explains, 
much in it was ‘novel and important’: a fully covariant formulation of  ‘Lorentz’s trans-
formations’ (so named by Poincaré), ‘its relativistic interpretation, its group-theoretic 
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formulation, and its application to non-electromagnetic forces of  cohesion or gravita-
tion’.57 Theoretical physicist Thibault Damour explains that most of  Poincaré’s ‘key new 
results’ are in the final section ‘in a rather untransparent and unpedagogical form’ but 
are mathematically complete: Poincaré had pioneered an ‘elegant 4-dimensional geo-
metrical formulation of  Special Relativity’ which Minkowski would expand upon in 
1907–8 using more ‘transparent notations’.58

We turn to Klein’s opening lecture (1 November 1905) of  the 1905–6 Klein–Hilbert–
Minkowski mathematics seminar.59 Stimulated by newly discovered notes from an 1859 
course by Riemann on hypergeometric functions, the seminar would review related 
German works in hopes of  attaining a proof  (based on Riemannian principles) of  
Poincaré’s 1883 uniformisation theorem (Hilbert’s Problem #22). They would examine 
‘the work of  Poincaré, beginning in 1881, published in the first five volumes of  Acta 
Mathematica’ and, in a few weeks, Klein would report ‘to the [Mathematical Society] on 
the advances obtained by Poincaré and their relationship to my own investigations’.60

At the second session, Minkowski lectured again on Poincaré’s ‘Analysis Situs’, featur-
ing its results on multidimensional manifolds, and H. Mueller reported on Poincaré’s 
work on Weierstrassian function theory. During the next five weeks, Gustav Herglotz 
gave lectures on Poincaré’s uniformisation and Poincaré’s ‘Sur les résidus integrals doubles’ 
and Erhard Schmidt lectured on Poincaré’s ‘Sur les fonctions de deux variables’ while, at the 
Göttingen Mathematical Society, Ernst Zermelo lectured on Poincaré’s work on bound-
ary-value problems, and Schmidt on Poincaré’s theory of  differential equations—all this 
and more before the end of  1905.

At the eleventh session (31 January 1906), Klein lectured on Poincaré’s development of  
Fuchsian functions, featuring Poincaré’s stance on viewing the substitution group as a 
group of  non-Euclidean rotations. Klein took the seminar participants through all of  
Poincaré’s geometric moves, including a detailed account (‘considered advantageous’  
by Minkowski) of  Poincaré’s description (quoted in Section  4.3) of  how in 1880 he 
mapped from a calotte of  one sheet of  a two-sheeted hyperboloid to the unit disc.61 The 
next five sessions continued reviewing Poincaré’s theory of  Fuchsian and Kleinian func-
tions and groups, featuring Poincaré’s general theory of  automorphic forms that Klein 
(after Friedrich Schottky) had incorporated into his own programme with collaborators 
Ernst Ritter and Robert Fricke.62

On 13 June 1906, Poincaré submitted his proof  of  general uniformisation to Acta 
Mathematica.63 Unaware of  Poincaré’s proof, Klein’s seminars continued almost a year 
before Klein presented to the Göttingen Mathematical Society a proof  of  general uni-
formisation proposed by Paul Koebe (a seminar attendee). Koebe would provide a sec-
ond proof  on 19 November 1907 that built upon (simplified, axiomatised) subtle novelties in 
Poincaré’s proof (which Acta had released earlier that month), novelties immediately 
absorbed into mainstream mathematical practice at Göttingen.

Klein’s presentation of  Koebe’s first proof  occurred on the very same day (11 May 1907) 
as Minkowski’s first lecture on the equations of  electrodynamics. Six months later (5 
November 1907, two weeks before Koebe’s celebrated second proof), Minkowski presented a 
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second lecture, ‘The Principle of  Relativity’,64 in which he acknowledged much debt to 
Poincaré’s January 1906 (Palermo) paper, highlighting Poincaré’s four-dimensional treat-
ment of  gravitation. Minkowski’s 1907 paper is evidence that ‘it was Poincaré who most 
directly influenced the mathematics of  Minkowski’s space-time’.65 And, as a founder of  the 
Minkowski Institute for Foundational Studies states, it was ‘Poincaré who first realized 
(before July 1905) that the Lorentz transformations have a natural geometric interpretation 
as rotations in a four-dimensional space whose fourth dimension is time’.66

Minkowski brought together Poincaré’s ‘true geometrical relations’ of  the four-
dimensional space with the ‘true physical relations’ established by Einstein: as Minkowski 
wrote in his Cologne lecture ‘Raum und Zeit’ on 21 September 1908, ‘the credit of  first 
recognising clearly that the time of  one of  the electrons is just as good as that of  the 
other, that is to say, that t and t´ are to be treated identically, belongs to A. Einstein’.67 But 
Minkowski did not acknowledge Poincaré’s crucial contribution in his Cologne lecture.68 
In the context of  the Göttingen milieu, Minkowski’s omission is not surprising, for both 
Klein and Hilbert, in different ways, had made it standard practice to absorb Poincaré’s 
and others’ contributions as elements of  their own programmes, which they saw as 
superseding what came before.69 The coincidence, in terms of  both place and timing, of  
Koebe’s two proofs of  uniformisation with Minkowski’s first two 1907 lectures on the 
principle of  relativity may have played a role.

4.6  CONCLUDING COMMENTS: 1908–12 AND BEYOND

Minkowski’s November 1907 lecture drawing upon Poincaré’s Palermo paper remained 
unpublished until 1915. Poincaré never entered into priority disputes, but in 1912 he was 
asked to clarify his stance on the new mechanics. While many interpret Poincaré’s ‘Space 
and Time’ paper as rejecting spacetime, mathematician Shlomo Sternberg argues that 
Poincaré’s last four paragraphs establish his long-standing ownership of  the geometry of  
the spacetime manifold. Poincaré died while this paper was in press, as was his paper 
‘Why Space Has Three Dimensions’, where he developed a topological concept of  
dimension and emphasised how the amorphous continuum becomes space when a met-
ric and other structures are imposed.70 As these works unambiguously show, Poincaré 
had broken free from limitations of  the physicist’s ether concept, establishing ‘true rela-
tions’ that endure—a foundation for the electromagnetic and gravitational fields of  rela-
tivistic and quantum phenomena.

Within a month after attending the 1911 first Solvay Conference as ‘a newcomer to 
quantum ideas’, Poincaré published three proofs at different levels of  generality of  the 
necessity of  the quantum hypothesis. His proof  made some prominent sceptics feel 
‘logically compelled to accept the quantum hypothesis in its entirety’ and, in the 1920s, 
quantum physicists cemented Poincaré’s newly invented ‘integral-over-states’ method at 
the heart of  statistical mechanics, showing it to be ‘completely justified’.71
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Poincaré also wrote a recommendation for Einstein for a position at ETH Zürich, 
praising Einstein’s unrivalled physical intuition and creativity:

Einstein is one of  the most original minds I have known . . . [The] facility with which he has 
adapted to new conceptions and from which he knows how to draw the consequences . . . trans-
lates immediately in his mind into the prediction of  new phenomena, susceptible of  being 
one day verified by experiment . . . The future will show more and more the value of  Mr. 
Einstein, and the university that finds a way to secure this young master is assured of  draw-
ing from it great honor.72

And, despite legends to the contrary, Einstein respected Poincaré’s comments on 
quantum theory and dynamical systems at the conference, drawing upon them in his 
highly creative 1917 paper on quantum chaos.73 Einstein was also well aware that many 
philosophers misinterpreted Poincaré’s ideas, noting in 1919 that the German mathemat-
ician and philosopher Eduard Study (an early Klein protégé),74

has treated him quite badly by pinning him down on a truly superficial comment about the 
practical significance of  Euclidean geometry. Poincaré’s expositions on the place of  geometry 
within the whole scientific system appear to me to be considerably more profound.75

Einstein here picks out precisely the point which others—missing Poincaré’s ‘considerably 
more profound’ mathematics and philosophy (and associated cosmological consider-
ations)—distort into a dogma or premise.

Even physicists and mathematicians unaware of  Poincaré’s ‘profound’ contributions 
were immersed within the mathematical world he helped create, and, however unknow-
ingly, used his tools, methods, reasoning and language. As the mathematician and physi-
cist Hermann Weyl acknowledged in 1931:

We differentiate now between the amorphous continuum and its metrical structures. The 
first has retained its a priori character . . . whereas the structural field is completely subjected 
to the power-play of  the world; being a real entity, Einstein prefers to call it the ether.76

The amorphous continuum, the mathematics of  analysis situs, enables creation of  the 
various ‘structures’ required in physics. Here we find Poincaré’s legacy: the mathematical 
realm and methods of  action needed to express physical relations within our space—
however one choses to label them—relations so delicate, rich and precise.
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